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Surface enhanced Raman Scattering
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• Nanometallic substrates locally amplify electromagnetic fields at or near 

particle surfaces providing > 106 enhancement over normal Raman.

• Ideal for low level detection & reduction of fluorescence 

• However, real world application success has been limited!

Why?



What’s Missing
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• Current theory of SERS resolves around 2 mechanisms 

– Electromagnetic enhancement drives most of signal and can be applied regardless of 

molecule being studied. 

– Chemical enhancement is less understood but involves charge transfer between the 

chemisorbed analyte & the metal surface

– No prediction capability from theory or the traditional Enhancement Factor

• Researchers study molecules that bind well, and focus substrate 

manufacturing on plasmonic structures/differences. 

Our work focuses on understanding the molecular properties, nano-metallic 

structure, and solvent factors that influence the binding of an analyte and 

resulting SERS response 



Break down of the System
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Attributing Thermodynamic 
Contributions Part I
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• SERS EF (G): More traditional approach, based on assumption of number of adsorbed 

molecules per unit area. Doesn’t account for differential experimental conditions

• ECBC SEV (F): No assumptions, based on measurable and definable factors
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𝐹𝛼 = 𝐺
 1 − 𝛼)𝐾𝑛𝑚𝑎𝑥𝐴

𝑉

Use of the SERS Enhancement Value (SEV) takes into account binding equilibrium and 

therefore the thermodynamics of the substrate/analyte/solvent interactions resulting in 

an overall more accurate measure of the sensitivity of a substrate. 

Guicheteau, J., et al,. Appl. 

Spec. 2013, 67(4), 396-403

Tripathi A. et al.,  ACS Nano, 

2015, 9(1), 584-593



Analysis Protocols
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Drop and Dry 
Protocol

Constant Time and 
Volume Protocol 

Langmuir Protocol

Thermodynamic properties No No Yes

Sample volume <100 µL >5 ml As high as 1 L

Time of analysis Seconds - minutes Minutes - hours Days

Useful for Determining the 
effectiveness of SERS 
substrate for a rapid 
response

Determining practical 
application of SERS
substrate

Determination of binding 
potential properties of SERS 
substrate

Drop and Dry CTVP                  Equilibrium

Thiophenol 

conc
Vol (L) Molecules Mol/Site Vol (L) molecules Mol/Site Vol (L)

 Immersion 

Time (hrs)
molecules Mol/Site

5.00E-09 1.00E-05 3.01E+10 1.58E-04 0.007 2.11E+13 1.11E-01 1 500 3.01E+15 1.58E+01

5.00E-08 1.00E-05 3.01E+11 1.58E-03 0.007 2.11E+14 1.11E+00 1 250 3.01E+16 1.58E+02

5.00E-07 1.00E-05 3.01E+12 1.58E-02 0.007 2.11E+15 1.11E+01 0.05 24 1.51E+16 7.92E+01

5.00E-06 1.00E-05 3.01E+13 1.58E-01 0.007 2.11E+16 1.11E+02 0.05 24 1.51E+17 7.92E+02

5.00E-05 1.00E-05 3.01E+14 1.58E+00 0.007 2.11E+17 1.11E+03 0.05 24 1.51E+18 7.92E+03

5.00E-04 1.00E-05 3.01E+15 1.58E+01 0.007 2.11E+18 1.11E+04 0.05 24 1.51E+19 7.92E+04

5.00E-03 1.00E-05 3.01E+16 1.58E+02 0.007 2.11E+19 1.11E+05 0.05 24 1.51E+20 7.92E+05

5.00E-02 1.00E-05 3.01E+17 1.58E+03 0.007 2.11E+20 1.11E+06 0.05 24 1.51E+21 7.92E+06



SEV 
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Analysis 
Protocol

BPE Thiophenol

EF (G) SEV (F90) EF (G) SEV (F90)

Drop and Dry 4.87E+06 1.36E+05 1.71E+06 1.57E+04

CTVP 5.74E+06 2.51E+06 7.55E+05 3.89E+04

Langmuir 7.29E+06 8.96E+07 9.55E+05 > 2.0E+09
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𝐹𝛼 = 𝐺
 1 − 𝛼)𝐾𝑛𝑚𝑎𝑥𝐴

𝑉

SEV  Accounts for 

experimental differences 

which are due to 

contributions of the 

substrate/analyte/solvent 

interactions

Guicheteau J., et al.                

Faraday Discussions, 

DOI: 10.1039/C7FD00141J, 2017



Attributing Thermodynamic 
Contributions Part II
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𝐹𝛼 = 𝐺
 1 − 𝛼)𝐾𝑛𝑚𝑎𝑥𝐴

𝑉

ln 𝐹𝛼) = ln
𝐺 1 − 𝛼 𝐴

𝑉
−

∆𝑔𝑟𝑥𝑛

𝑅𝑇
+

∆𝑔𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛

𝑅𝑇
+ ln 𝑛𝑚𝑎𝑥 − 𝑛𝑠𝑜𝑙𝑣𝑒𝑛𝑡

2017

Design parameters 

of the SERS 

substrate, 

Spectrometer, and 

collection efficiency 

the thermodynamics 

of adsorbate-

substrate interaction

effect of solvent on 

the SERS 

response 

2014



Geometry and Metals
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Geometry and Metals

12

0

2

4

6

8

10

12

14

16

18

20

-48 -43 -38 -33 -28

ln
(F

9
0
)

ln(K)

4-chloroaniline
Aniline
Isoquinoline
Pyrazine
Pyridine
BPE

BPE

• Relationship between ln(F) vs. ln(K), yields a straight-line with a intercept proportional to 

G x nmax. (SERS enhancement per unit area)

• Changing metal but keeping 

geometry the same

• Changing geometry but keeping 

metal the same

• 4 different substrates/metals combo

Two Paths on determining F relationship

Tripathi, A.; et al. ACS Nano, 2015, 9 (1), pp584-593
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Geometry and Metals
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attachment to silver was observed as a 
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Ag-UCSB, 633nm Au-Klarite, 785nm

TP in H2O

• 20  times higher response at 

fully formed SAM for UCSB

• Measureable equilibrium 

constant
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Geometry and Metals
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Klarite equilibriated with TP and then with BPE in DIW

BPE concentration, M 
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Tripathi A., et al. J. Phys. Chem. C 2016, 120, 23523−23528

• Identification of Nucleophilic and Electrophilic Binding Sites on SERS substrates



BPE, Concentration (M)

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

P
e
a
k
 a

re
a
, 

1
2
0
0
 c

m
-1

 (
C

o
u

n
ts

/m
W

)

0

5000

10000

15000

20000

25000
Au-KIMS
Klarite (*3)
Micro Roughened (x7)
Si-Grid (x1000)

Geometry and Metals

15

Geometry matters!

Electrophilic Nucleophilic



Adsorbate/Substrate Interaction
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ln 𝐹𝛼) = ln
𝐺 1 − 𝛼 𝐴

𝑉
−

∆𝑔𝑟𝑥𝑛

𝑅𝑇
+

∆𝑔𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛

𝑅𝑇
+ ln 𝑛𝑚𝑎𝑥 − 𝑛𝑠𝑜𝑙𝑣𝑒𝑛𝑡

the thermodynamics 

of adsorbate-
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Adsorbate/Substrate Interaction
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• Thiophenol adsorbs very strongly to Klarite substrates such that an 

equilibrium constant is too large to measure.   

• We selected various functional group substituted thiophenol molecules. 

The functional groups were selected on the basis of their electron 

donating (-OH, -CH3, -NH2) or electron withdrawing characteristics (-F, 

-Cl, -Br, -SH).

*Localized dipole 

moments with respect to 

benzene ring

• Keeping Substrate/Geometry and Solvent the same to study influence of 

molecular polarity and localized charge density on binding point



Adsorbate/Substrate Interaction

Electron donating groups Electron withdrawing groups
(halogenated)

Electron withdrawing groups
(non-halogenated)

• NO2 data collection 

on going



Adsorbate/Substrate Interaction
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DG of EDGs (–H, -CH3, -NH2)  is too 

negative to measure

A trend

• thiols with electron donating 

groups bind via a strong S-Au/Ag 

bond. 

• thiols with electron withdrawing 

groups bind via a weaker S-Au/Ag 

bond. 

• Localized charge on sulfur affects 

binding



Effect of Solvent
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Effect of Solvent
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Determining the role of solvation on anlayte binding to SERS substrate: relationship to Fa

• Effect on G x 𝑛𝑚𝑎𝑥?
• Mechanism of binding?  

• BPE & Thiophenol in Acetonitrile, EtoH, H2O, dodecane, toluene

• Three potential scenarios 

• 𝑛𝑎𝑣𝑎𝑖𝑙 and DG both change

• DG changes but 𝑛𝑎𝑣𝑎𝑖𝑙 is constant

• Mechanism changes – rearrangement

Manuscript in preparation 

𝑛𝑚𝑎𝑥

Maximum # of sites on 

substrate

(function of substrate)

𝑛𝑎𝑣𝑎𝑖𝑙 = 𝑛𝑚𝑎𝑥 − 𝑛𝑠𝑜𝑙𝑣

𝑛𝑚𝑎𝑥 − 𝑛𝑠𝑜𝑙𝑣

𝑛𝑎𝑣𝑎𝑖𝑙 = 𝑛𝑚𝑎𝑥𝑆𝑜𝑙𝑣𝑒𝑛𝑡/𝐴𝑛𝑎𝑙𝑦𝑡𝑒



Effect of Solvent

• Solvents can effect binding of analyte (Thiophenol example)



Effect of Solvent

Both acetonitrile and 

ethanol clearly influence 

available sites

competition of available sites



Where to go – Application driven 
substrate design
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• Substrate design utilizing thermodynamic considerations

• Increasing, decreasing electrophilic/nucleophilic nature (not just providing

more sites)

• Bridging the gap between the sites could lead to ability to bind different 

molecules that are not typically SERS active (threat materials, non-aromatics, 

etc..)

• Detection Schemes

• Best approach to using SERS for defense detection science

• Microfluidics (colloids/chips)

• Swabs/test strips

• Lab on a chip/Photonic Integrated Circuits 

ln 𝐹𝛼) = ln
𝐺 1 − 𝛼 𝐴

𝑉
−

∆𝑔𝑟𝑥𝑛

𝑅𝑇
+

∆𝑔𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛

𝑅𝑇
+ ln 𝑛𝑚𝑎𝑥 − 𝑛𝑠𝑜𝑙𝑣𝑒𝑛𝑡
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